

TCE Update

Former NAS Moffett Field Restoration Advisory Board Meeting

November 3, 2011

Dan Stralka
Regional Toxicologist
EPA Region 9

TCE Update

- Significance of TCE at Superfund sites
- EPA drinking water standard for TCE is 5 ppb
- No similar EPA standard for vapor intrusion pathway and indoor air
- EPA issued new TCE toxicity on 28 September 2011
- Integrated Risk Information System (IRIS) process
- Projected Regional Screening Levels
- Questions

Why is IRIS Important?

Risk Assessment and Risk-Based Cleanup Levels (PRGs) now called Regional Screening Tables (RSLs)

- Review scientific literature for toxicity data
 - identify useful (scientifically valid) studies
- Analyze the relevant data
 - identify critical studies, toxicities
 - quantitative modeling of dose-response
- Write a toxicological review
- Calculate toxicity values for risk assessment
 - cancer potency factors
 - non-cancer reference doses
- Publish on IRIS database

Hazard Assessment

Health Effects associated with TCE

- Non-cancer
 - Acute effects-neurological
 - Various organ systems
 - Liver
 - Kidney
 - Immunological
 - Reproductive
 - Developmental

- Cancer
 - Kidney
 - Liver
 - Lymphoma
- Mode of Action
 - Mutagenic (kidney only)
 - through metabolites

What's New in the TCE Toxicological Review

- Cancer and Non-cancer values
- · Values for both oral and inhalation
- Account for multiple sites of cancer
- Mutagenic mode of action for kidney cancer

Key features of the Final TCE Assessment

- Main components of External Review Draft retained
 - -Comprehensive review of studies of TCE and TCE metabolites
 - -Toxicity review organized by tissue/system
 - Multiple lines of evidence supporting major conclusions of hazard characterization and dose-response assessment
 - Human epidemiologic data
 - Animal toxicity data
 - Mechanistic data
 - State-of-the-art quantitative analyses
- Implemented virtually all SAB recommendations, resulting in:
 - -Small (<3-fold) changes in non-cancer RfD and RfC
 - -No change to carcinogenic classification
 - -No change to cancer inhalation unit risk or oral slope factor
 - -No change to application of ADAFs

,

Final Dose Response Assessment: Summary

Final Non-cancer reference values

- RfC and RfD selected are protective of the most sensitive effects, supported by multiple studies/endpoints
- Most sensitive target organs/systems: adult immunological system, developing fetal heart, developing immunological system
- Supported by kidney effects

Final Cancer risk values

- Target sites: kidney cancer, NHL, and liver cancer
- Apply ADAF to kidney cancer risk only

		Current RSL		New RSL		MEW decisions
	endpoint	cancer 10-6	non- cancer	cancer 10-6	non- cancer	
Residential	water ug/L	2	21	~1	3	5 MCL
	air ug/m3	1	10	~0.5	2	1
Industrial	air ug/m3	6	44	~4	9	5

TCE Update: Take Home

- All EPA programs are looking at the new toxicity values and making the management decisions on how to implement any changes
- In Superfund, EPA has Five-Year Review process and will assess impact of any changes that revised TCE toxicity values have on health-based screening values and risk management decisions at each site

Questions?

Dan Stralka
Regional Toxicologist
415.972.3048
Stralka.Daniel@epa.gov

Where to go for more information on TCE: http://www.epa.gov/IRIS/ and click on TCE link

- Most sensitive candidate critical effects by domain
- Multiple candidate RfCs in range 0.0003-0.0006 ppm
- Kidney effects considered supporting, not primary.
- RfC of 0.0004 ppm (2 µg/m³) based on multiple principal studies/ effects

EFFECT DOMAIN	p-cRfC
Most sensitive candidate critical	ppm
effects	(UF _{comp})
(study)	
NEUROLOGIC	
Demyelination in hippocampus	0.0071
(rat/Isaacson et al. 1990)	(1000)
KIDNEY	
Toxic nephropathy	0.00056
(rat/NTP 1988)	(10)
Toxic nephrosis	0.0017
(mouse/NCI 1976)	(300)
↑ kidney weight	0.0013
(rat/Woolhiser et al. 2006)	(10)
LIVER	
↑ liver weight	1.0
(mouse/Kjellstrand et al. 1983b)	(10)
IMMUNOLOGIC	
↓ thymus weight	0.00033
(mouse/Keil et al. 2009)	(100)
↑ anti-dsDNA & anti-ssDNA Abs	0.0033
(mouse/Keil et al. 2009)	(10)
REPRODUCTIVE	
↓ ability of sperm to fertilize	0.0093
(rat/DuTeaux et al. 2004)	(1000)
DEVELOPMENTAL	
Heart malformations	0.00037
(rat/Johnson et al. 2003)	(10)

Critical effects for the RfD

- Most sensitive candidate critical effects by domain
- Multiple candidate RfDs in range 0.0003-0.0005 mg/kg/d
- Kidney effects considered supporting, not primary.
- RfD of 0.0005 mg/kg/d based on multiple principal studies/ effects

	EFFECT DOMAIN	p-cRfD or	
	Most sensitive candidate critical	cRfD	
	effects	mg/kg/d	
	(study)	(UF _{comp})	
	NEUROLOGIC		
	Demyelination in hippocampus	0.0092	
	(rat/lsaacson et al. 1990)	(1000)	
	KIDNEY		
_	Toxic nephropathy	0.00034	
	(rat/NTP 1988)	(10)	
	LIVER		
	↑ liver weight	0.90	
	(mouse/Kjellstrand et al. 1983b)	(10)	
	IMMUNOLOGIC		
	thymus weight	0.00048	
	(mouse/Keil et al. 2009)	(100)	
	REPRODUCTIVE		
	↓ ability of sperm to fertilize	0.016	
	(rat/DuTeaux et al. 2004)	(1000)	
	Multiple effects	0.016	
	(rat/Kumar et al. 2000a, 2001b)	(1000)	
	Hyperzoospermia	0.024	
	(human/Chia et al. 1996) ^c	(30)	
	DEVELOPMENTAL		
\	↓ PFC, ↑ DTH	0.00037	
	(rat/Peden-Adams et al. 2006)*	(1000)	
	Heart malformations	0.00051	
	(rat/Johnson et al. 2003)	(10)	

 $^{\star}\mathrm{cRfD}$ for this study based on applied dose (PBPK modeling not done)

United States Environmental Protect Agency

Dose-Response: Cancer

Inhalation

- Kidney cancer inhalation unit risk- human epidemiologic data
- Adjustment to inhalation unit risk to account for risks of lymphomas and liver cancer as well
 - Use human epidemiologic data on TCE for relative risks to derive potency for lymphomas and liver cancer relative to potency for kidney cancer
 - -Adjustment factor \approx 4, so risk for all three sites combined = risk for kidney alone \times 4

Oral

 Oral slope factor from route-to route extrapolation using all the same cancer outcomes and combined